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Numerical solutions for fully nonlinear two-dimensional irrotational free-surface 
flows form the basis of this study. They are complemented and supported by a 
limited number of experimental measurements. A solitary wave propagates along a 
channel which has a bed containing a cylindrical bump of semicircular cross-section, 
placed parallel to the incident wave crest. The interaction between wave and cylinder 
takes a variety of forms, depending on the wave height and cylinder radius, 
measured relative to the depth. Almost all the resulting wave motions differ from the 
behaviour which was anticipated when the study began. In  particular, in those cases 
where the wave breaks, the breaking occurs beyond the top of the cylinder. The same 
wave may break in two different directions: forwards as usual, and backwards 
towards the back of the cylinder. In addition small reflected waves come from the 
region of uniform depth beyond the cylinder. Experimental results are reported 
which confirm some of the predictions made. The results found for solitary waves are 
contrasted with the behaviour of a group of periodic waves. 

1. Introduction 
The interaction of freely propagating water waves with obstacles is relevant to the 

design and operation of offshore and coastal structures. The study reported here 
arose from the continuing development of numerical methods and computer 
programs to model steep unsteady waves, including the initial stages of wave 
breaking. Our first computations of a solitary wave meeting an obstacle on the bed 
revealed unexpected behaviour and prompted this work. 

Previous work on solitary waves meeting submerged obstacles discusses weak 
interaction in the context of shallow-water approximations such as the Korteweg- 
de Vries equation. Seabra-Santos, Renouard I% Tempeville (1987) have examined 
the motion of solitary waves over triangular shapes. These theories predict some 
reflection, and a disturbed transmitted wave which leaves a small-amplitude 
diapersive wave train in its wake. Small, deeply submerged obstacles which are much 
shorter than the wavelength, are certainly inefficient a t  scattering long waves, and 
so long as one stays within the range of validity of the shallow-water equations such 
theories can only predict weak interactions. Our computations have allowed us to go 
further and investigate strong interactions between an object on the bed and a 
solitary wave. 

The class of solitary waves was chosen for study because it includes the largest 
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steadily propagating wave in water of constant depth. Consequently it was thought 
that these might model the ocean waves most damaging to coastal structures. 

A solitary wave propagating in water of constant depth h has properties that only 
depend on its height, a. A semicircular bump on the flat bed is described by its radius, 
R. This shape is chosen as a simple example of an obstacle that has dimensions which 
are of the same order of magnitude as the depth. We choose dimensionless units such 
that the depth of fluid h, gravity g ,  and the fluid density p are all unity. This leaves 
us with only two parameters in our problem : the wave amplitude a and the cylinder 
radius R. The (a,&) parameter space is limited by the maximum solitary wave height 
a = 0.83 and by our selection of submerged cylinders, hence R is less than one. 

The primary method of investigation is computation of the water motion. The flow 
is approximated by two-dimensional irrotational incompressible inviscid flow, with 
no influence from the air movement above the free surface. We also neglect surface 
tension. The exact inviscid free-surface boundary conditions are used. 

The numerical method is an extension of the boundary-integral program used by 
Tanaka et al. (1987) to study the stability of steep solitary waves. The program 
incorporates the high-order discretizations introduced by Dold & Peregrine (1986), 
and see also Dold (1990). The earlier program models waves propagating in fluid of 
fixed depth, and has been extended to describe wave motion over irregular beds. 
Some details of the method are given in $2. Suitable boundary-integral methods 
have been developed by Vinje & Brevig (1981), Teles da Silva (1989), and Yasuda, 
Hara & Tanaka (1990). They have also investigated solitary wave interaction with 
some submerged obstacles, but until now there has been no comprehensive discussion 
of the results such as that presented in this paper. 

In $3  we summarize the computations which explore the (a ,R)  parameter space. 
A number of phenomena are found. Some are as expected: small obstacles cause 
small perturbations to the wave and bring about weak reflection, and waves that are 
so large initially that they are unstable are caused to break by small obstacles. Other 
behaviour is unexpected. Moderate size cylinders interact strongly with the wave. 
Over a wide range of parameters a second crest forms and quickly takes over from 
the incident crest. For large enough waves and cylinders, the waves break, but never 
while the crest is approaching the cylinder. The breaking always occurs beyond the 
top of the obstacle and often well past the whole obstacle. In addition some waves 
break backwards after passing the cylinder. Small reflected waves come from the 
uniform depth region beyond the cylinder. These unexpected results are described 
and discussed. Some are easier to interpret than others. 

Experiments have been carried out for a limited number of examples of solitary 
waves propagating over semicircular bumps. These examples include breaking 
waves. Comparisons with computation proved satisfactory. The experiments are 
described in $4, and the experimental results are given in $5. Section 6 is a discussion 
of the computational and experimental results. Some conclusions are drawn in $7. 

From a practical point of view, since none of our computations show any 
significant reflection of wave energy, the only way a submerged fixed? obstacle of 
this type can be an effective breakwater is when it induces wave breaking. Even then 
the breaking frequently occurs well beyond the cylinder and is restricted to a small 
region near the wave crest. Therefore, although our computations stop at the time 
of breaking it is likely that the transmitted wave continues its motion as a spilling 
breaker. 

t Moving submerged obstacles can be very efficient wave energy reflectors, aee Evans & Linton 
(1989). 
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FIGURE 1. Definition sketch of physical plane. Lengths are scaled by the depth. 

2. Mathematical Formulation 
2.1. The boundary-integral equation 

We assume that the fluid motion is two-dimensional, irrotational, inviscid and 
incompressible. The irrotational velocity field u(x, y ,  t )  is the gradient of a velocity 
potential $(x, y, t )  which satisfies Laplace’s equation in the fluid domain 9. 

At the free surface, F ,  we impose the boundary condition that the fluid pressure 
is the same as the atmospheric pressure, p, ,  above the fluid. We assume that p ,  is 
constant in time, and takes the same value along the entire length of F .  For 
convenience we make p ,  = 0. We neglect surface tension. At infinity we suppose that 
the fluid surface is a t  rest a t  y = 0. Using Bernoulli’s equation, with units chosen so 
that depth and the acceleration due to gravity are equal to unity, we have 

- i ( U 2  + U S )  - y _.- D$ 
Dt 

on 

where u, w are the components of the velocity u, and y (measured vertically upwards) 
is the elevation of the free surface above the undisturbed water level. 

D / D ~  = a/a t+u.  v 
denotes the time-derivative following the fluid motion. 

We also impose the boundary condition that a fluid particle described by position 
vector P on the moving free surface F ,  remains on F .  This kinematic boundary 
condition is 

D P / D t = V $  on F .  (2.2) 

a$/an = 0. (2.3) 

V$+O as X++CQ.  (2.4) 

On the fixed, impermeable bed we impose the condition 

Lastly we have the far-field condition: 

See figure 1. We solve Laplace’s equation using a boundary-integral method, 
developed from that used by Tanaka et al. (1987) for solitary wave evolution over a 
flat bed a t  y = - 1. That method is an extension of a version which is periodic in 
space, developed by Dold & Peregrine (1986). These programs achieve high 
computational efficiency owing to a number of factors, including high-order 
numerical approximations. A fully detailed account is in preparation, Dold (1990). 

In  the Tanaka et al. (1987) method the bed is a flat horizontal line. The image of 
the free surface in the flat bed at y = - 1 is used, and Cauchy’s integral theorem, in 
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principle value form, is applied to the complex velocity Qz on F :  Qz = $z - i$y = 

($8 - i$n) P,*/IP,I 3 

- jF  4; Im { $!j5 + p‘* - p8 2i - p }asf. (2.5) 

In  (2.5) P = X+iY = P(s,  t )  is a complex number describing the position of a fluid 
particle on F ,  and s is a real variable which parametrizes the free surface: F is 
described by s in a clockwise sense, i.e. from x = - 00 to  x = 00. A prime indicates 
evaluation a t  s’, and the absence of a prime indicates evaluation a t  s. P, = aP/as a t  
s, and * signifies complex conjugate. $n is a scaled derivative along the outward- 
drawn normal to the free surface, and $s is a scaled tangential derivative. The 
integrals are principal value. 

Note that s is not necessarily arclength, and here we choose s to vary along F so 
that it has integer values at discretization points. 

We can summarize the basic, obstacle-free method in two steps: initial position 
(X, Y) and potential $(P) known a t  the surface, a t  time t .  

(1) Solve (2.5) for +n the derivative normal to the free surface. 
(2) Time-step X, Y,$  from time t to t+At  using (2.1) and (2.2). 
In step 2 the computation points P follow the fluid motion, and coincide with fluid 

particles on F .  The concise way in which we are able to  present the integral equation 
is due to the reflection of the free surface in the j u t  bottom. For an irregular bed we 
cannot do this immediately. So first we conformally map the physical plane of figure 1 
into a domain containing a flat bed. The mapping preserves Laplace’s equation in 
the transformed variables. The image of the free surface, under the conformal 
mapping, can then be reflected in the flat bed, and the integral equation solved. The 
solution is conformally mapped back into the physical plane for the time-stepping 
process. The benefits of solving Laplace’s equation in a flat-bedded plane are 
important : the use of images avoids integration along the bed. 

To summarize, we have a four-stage method for irregular beds to replace the above 
two-stage scheme for flat beds: the two additional steps consist of the conformal 
mapping (step 1) and its inverse (step 3):  Initial position of surface (X, Y )  and 
potential $(P) known a t  time t .  

(1) Conformally map X, Y ,  $ to X,B, 6 in flat-bedded plane. 
(2) Solve for &n using (2.5) (expressed in overbarred variables). 
(3) Conformally map X ,  B, ($s, r$,J back to physical plane: X ,  Y ,  ( $ 8 ,  +,J. 
(4) Time-step X, Y , $  from time t to t + A t  using (2.1) and (2.2). 
If N is the number of surface computation points then O ( N 2 )  operations are needed 

to set up and solve the integral equation (2.5), for each time-step. This is because we 
use an iterative scheme to solve the linear system. A direct method of solution would 
have involved O(N3)  operations. The conformal transformations a t  steps 2 and 4, in 
the program involve O ( N )  operations and so they represent a small overhead in the 
cost of computation, even if a complicated mapping is required. 

2.2 .  Numerical method 

The fluid domain 9 is truncated at the left- and right-hand ends of the flow, the ‘end ’ 
being defined where the surface elevation is found to be less than The truncated 
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free surface F is discretized using N points. The parameter s a t  time t describes F, i.e. 
P = P(s, t )  = X ( s ,  t )  + iY(s, t) .  We choose the parametrization such that s takes on 
integer values a t  the N computation points, and so s is a point label parameter. 

With this choice of s we can turn (2.5) into a system of linear equations for the set 
of unknowns (a$/an},,,,,, provided we pay due care to the evaluation of the 
integrals near 8’ = 5 (i.e. near P’ = P )  : 

A prime denotes evaluation at s’, and the absence of a prime denotes evaluation at 
s. The real matrices A and B are ( N x N ) .  The singular parts of the integrand of (2.5) 
manifest themselves in the components P8J2P8 of A+iB,  in (2.7). The remaining 
parts of the integration are estimated by the trapezoidal rule and appear in the 
summations. Note that the free surface is almost flat for a significant region at each 
end of the domain and so both gl, and gl, are very small at the limits of integration. 
Further, it is a convenient fact that  neighbouring points have unit separation when 
described in s-space. The trapezoidal rule is then accurate to  a high order when used 
to integrate functions, such as those in (2.5),  which are tending to  zero a t  each end 
of the domain. 

Equation (2.6) can be solved iteratively for ($,(s)>,-~,, (see Dold & Peregrine 
1986). The first estimate for {$,} is found by calculating the right-hand side of (2.6). 
I n  the first summation of (2.6) we use {$s(d)}sr=l, , calculated at the current time. A 
good first iterate, in the interation process to  find ($,(s’)>~.-~, N ,  is to  use the solution 
found a t  the previous time-step. This old solution is used in the second summation 
of (2.6). 

The tangential derivatives are estimated by eleven-point central difference 
formulas, based on the values $(s), $(s-+ i), . . . , $(s+5). These very accurate 
estimates ensure that the overall method is precise and robust. The first estimate for 
{$,} is substituted into the right-hand side of (2.6) to find the second iterate, and so 
on, until successive iterates differ by less than a fixed parameter. Convergence is 
normally achieved within less than 16 iterations. We now know (q58, #,J at time t ,  at 
each computation point, so we can use (2.1) to find Dgl/Dt. 

Equation (2.2) is an ordinary differential equation in time for the surface position. 
A Taylor series expansion about time t enables us to integrate this ODE over the 
time-step t to t + At, and the higher time-derivatives of $ are found as follows. The 
first and second time-derivatives, #,(t) and gltt(t), also satisfy Laplace’s equation. 
Once $, has been calculated from Bernoulli’s equation, we can repeat the above 
method to find ($,,, &), ($ t tn ,  $,,,) and hence D2$/Dt2, DS$/Dt3 a t  time t .  D4$/Dt4 
and D5$/Dt5 are also estimated, from backward difference formulas involving the 
values of D3$/Dt3 at the two previous time-steps. Using (2.2) we can time-step the 
fluid surface from its position at time I, to its position at time t+At, and use (2.1) to 
find the new values of a t  the new surface position. So in effect we use a fifth-order 
Taylor series in time to perform the time-stepping. 
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2.3. Application of the method : the semicircular breakwater 

An example of the application of the above method is a bottom which consists of a 
semicircle placed on an otherwise flat horizontal bed. See figure 1 .  The bump has 
centre x = - i  and radius R,  in a depth of fluid h = 1.  A conformal transformation 
which maps this profile into a flat-bedded plane is 

R2 
Z+l 

w = z+:, 

where w is a complex variable describing a flat-bedded plane such that Im (w) = - 1 
on the bed. 

The initial conditions are a solitary wave of height a on unit depth of fluid 
propagating in the -x direction towards the cylinder. The iqitial wave is calculated 
using the method of Tanaka (1986) and is placed so that the surface elevation a t  the 
cylinder is less than 0.001 of the depth. 

We make distances and times dimensionless by scaling with respect to the depth 
h and (h/g)f, respectively. With reference to these scales the incident solitary wave 
has an amplitude a < 0.83, and the radius of the semicircle R < 1. 

As few as 35 computation points placed along the free surface can describe the 
steady propagation of a solitary wave of amplitude 0.2. For larger solitary waves up 
to amplitude 0.8 more points are needed, rising to around 85 for the highest. Solitary 
waves with height less than 0.1 are also very long so more points are needed to 
describe the tail of the wave. In the initial data for the wave, the density of points 
is greater near the crest than in the tail. In  a frame of reference moving with the 
wave, fluid particles move more slowly at the crest than in the tail. The initial point 
separation is made directly proportional to  this local fluid speed along t'he free 
surface, and so the point density is maintained naturally by the fluid motion when 
the wave is propagating steadily (New 1983 and Peregrine 1990). 

As the wave travels forward, extra points are added onto the front of the domain. 
A new point is added if the end point has moved vertically further than from 
y = 0. The new point is placed a t  y = 0 and a t  a distance equal to the separation of 
the last two points. A similar process removes computation points from the tail end 
of the domain. 

The length of each time-step is controlled during calculation by the algorithm so 
it is not easy to compare with other methods which have fixed time-steps. The time- 
step is chosen as follows. Consider the term (At3)3 (D3q5/Dt3)/3 ! in the Taylor series 
expansion for $ ( t + A t ) .  We require that Ata be chosen such that the largest value of 
this term, over the set of points in F ,  must be 6 ,  a precision parameter. Similarly At4 
is the time-step which limits the largest fourth-order term over F to e.  The time-step 
is then chosen to be At = (At3At4)b. 

For a steadily propagating solitary wave of height 0.5, 10 time-steps are needed for 
each unit of time when E = When there are 85 points, in the absence of any 
obstacle, 10 time-steps require the following. 

Machine CPU Time (Y) 

IBM 3090- 150s (with vector processing) 
Gould KP1 5 
VAX 750 30 

100 

0.5 

IBM-Compatible Tandon AT PC (with 80287 coprocessor) 

The time-step shortens by approximately 40 % when the crest is near the obstacle 
because of the more irregular surface motion. The method is stable. It does not suffer 
from saw-tooth instabilities. 
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FIGURE 2. The (a ,R)  parameter space. a and R are the dimensionless incident wave amplitude, 
and semicircle radius, respectively. The symbols ( + ) indicate experiments. 

R 

Throughout the calculations for this paper the mass changed by less than of 
the initial mass of fluid above y = 0. Changes in the total energy amounted to less 
than As a check on the computations, the same semicircular bed shape was used 
in another program which places discretization points on that part of the bed which 
is not horizontal, instead of using a conformal map. The comparison involved a 
solitary wave of height 0.5 running over a semicircle of radius 0.5, and was carried 
out courtesy of F. Teles da Silva. The programs computed ten time units and after 
this time the (x, y)-components of surface position were found to differ only in the 
fifth significant figure. 

Inspection of local accelerations and pressure gradients shows that accuracy 
becomes poor once surface features have lengthscales as short as the point 
separation. For example consider a steady flow over a submerged obstacle which 
produces downstream very short, stationary waves. Deep-water waves of length 
0.063 are stationary on a stream of speed 0.1, in unit depth. Any waves of this length 
are too small to be resolved except by an unreasonably large number of computation 
points, yet the unsteady flows described here can be expected to generate such waves. 
We have not considered it worthwhile to pursue such minor features of the flow. 

3. Computational results 
In this section we discuss the results of computations which cover the complete 

range of wave heights and cylinder radii. The (a ,  R) parameter space contains regions 
of different wave response. See figure 2 ,  which summarizes the explorations involving 
about 130 separate computations. The regions have appreciable overlap, because 
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FIGURE 3. a = 0.6, R = 0.5. Wave train : W-T. Incident wave moves from right to left. Transmitted 
wave, with dispersive waves trailing behind, and right-travelling reflected waves. Vertical 
exaggeration = 40. Position of semicircle shown, with centre at x = 0. 

more than one response may occur for a given combination of wave height and 
semicircle radius. Only the first significant response is plotted in the figure. The 
principal phenomena of interest within each region are described below. 

3.1. Wave train (W-5") 
The large region labelled W-T in the lower left part of figure 2 represents the 
interaction between solitary waves and small to medium size cylinders. The region 
is characterized by the solitary wave being only slightly perturbed by the obstacle. 
The transmitted wave carries behind it a small dispersive wave train. There is also 
a train of reflected waves. 

Figure 3 illustrates this for a wave of height 0.6 which has passed over a cylinder 
of radius 0.5. The surface profile has been vertically exaggerated to show the smaller 
trailing and reflected waves. The reflected wave has a near-zero mean surface 
elevation, so it cannot evolve into a solitary wave of any significant height. Note the 
equally small wave at x = - 10 in the tail of the solitary wave, which may evolve into 
a secondary wave, because it has a small, positive mean surface displacement. 

Seabra-Santos et al. (1987) investigated experimentally the problem of solitary 
wave propagation over an isolated triangular obstacle. In  one set of experiments the 
obstacle had height 0.4 and base width 0.564. The incident waves lay in the range a = 
0.2 to a = 0.6, and each showed a small reflected solitary wave. From their figure 10 
one can infer a reflection coefficient of approximately 0.05 for a wave of height 0.4. 
(Contrast this with the smaller reflection coefficient of 0.03 for the computation 
above in which a = 0.6 and the obstacle is larger: R = 0.5). There were no solitary 
waves in the wake of their transmitted wave. The triangular obstacle and our larger 
semicircle both produce a dispersive wave train and a reflected wave. Seabra-Santos 
et al. comment that for obstacles smaller than half the depth the reflected waves are 
negligible. The discrepancy in the size of these very small secondary waves may be 
accounted for by the difference in shape between the obstacles, and real fluid effects, 
such as flow separation, which might reduce reflection in experiments. 
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FIGURE 4. a = 0.219, R = 0.7. Crest exchange: C-C. The incident wave decreases in amplitude 
while, on the opposite side of the obstacle, the transmitted crest grows. Vertical exaggeration = 5. 
Obstacle position as shown. The last few profiles show that the discretization cannot resolve the 
very short waves generated by the flow. Times t = 6.0, 6.2, ... ,9.0. Time increases down the page. 

........................................................................................................................................................ 

.................................................................. ......................................... 

............................................................... 
.................................................. 

..................................... 
......................... 

....................................... 

- 6 - 5 - 4  - 3  -2 - 1  0 1 2 3 4 5 6 7 8 
Position 

FIGURE 5. As figure 4. Position of crests in time. The incident crest (-) amplitude vanishes at  
t = 9. Transmitted wave ( .  . . . .  * )  has amplitude 0.223 at t = 12; reflected wave (-----) has 
amplitude 0.04 a t  t = 12. 

3.2.  Crest-crest exchange (C-C)  
Almost all solitary waves of amplitude greater than about 0.2, riding over cylinders 
larger than about R = 0.5, exhibit a double crest as they cross the obstacle. The 
incident wave approaches the cylinder and a bulge grows in the surface, on the 
opposite side of the obstacle. The bulge grows into the crest of a new wave which 
propagates away from the obstacle. While the new crest grows, the incident crest 
decays to a fraction of its original height, and slows down. Then its direction reverses 
and it propagates away as a small reflected wave. This effect we call crest-crest 
exchange, and it dominates the interaction in the regime labelled C-C in figure 2. It 
also occurs in much of the regions marked F-B and B-B, where other types of 
interaction are more important. We have adopted the name ‘crest-crest exchange ’ 
because the wave appears to exchange one crest for another in a short period of time. 

Figure 4 illustrates this effect for an example where a = 0.219 and R = 0.7. The 
path of each crest is plotted in the space-time diagram of figure 5.  The height of each 
crest is also indicated. Figure 5 is in part reminiscent of a space-time diagram for a 
solitary wave overtaking a smaller one where, unless there is a large disparity in size, 
the two crests remain distinct and exchange identities. 
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The long solitary wave passing over the short cylinder induces a flow over the 
semicircle which varies slowly in time. It is reasonable to ask if the disturbances in 
the free surface, induced by the wave, bear any resemblance to the disturbances 
induced by a steady flow passing over the semicircle. 

Consider a flow such that at t = 0 the free surface is a t  y = 0, above the semicircle. 
A t  all times, a t  x = L co, the flow is from right to left with speed c.  We have modified 
the numerical method to model the unsteady development of the free surface. For the 
small values of c that we consider here, stationary waves are found to develop 
downstream of the semicircle. As time goes on successive wave crests form ever- 
further from the obstacle. The situation that arises as t+ co has been discussed 
within the context of a steady flow theory by Forbes & Schwartz (1984). 

We choose a value of c appropriate for comparison with the flow induced by the 
passage of the solitary wave. For the solitary wave problem the maximum horizontal 
mass flux over the cylinder was 0.4. In the steady upstream flow problem the fluid 
flowing over the top of the R = 0.7 cylinder has depth 0.3. So to gain a mass flux of 
0.4 we need c = 0.3 x 0.4 = 0.12. Also the solitary wave sustains the near-maximum 
flow over the semicircle for about three time units, so it is reasonable to let the steady 
flow pass for a similar period of time. Over three time units we found that the steady 
upstream flow induces a depression of amplitude 0.04 and length 0.9 over the 
obstacle, and also part of the first wave in the wave train. The amplitude and 
wavelength (0.04 and 0.9) of the depression match the dimensions of the trough 
between the two crests in figure 4. 

A full discussion of the problem of the steady and unsteady waves induced by a 
uniform upstream flow, is given by Teles da Silva (1989), using a method related to 
that used here. 

3.3.  Backward breakers (B-B) 
In the region of figure 2 labelled B-B we have solitary waves of amplitude between 
0.3 and 0.5 passing over cylinders of radii 0.5 to 0.7.  After the main crest has passed 
over the obstacle, the surface in the tail of the wave, and near the obstacle, steepens 
and breaks backwards onto the cylinder. This breaking in the transmitted wave’s tail 
also occurs for parameters in the region labelled F-B, discussed below. However, B-B 
is characterized by backwards breaking occurring before any other breaking event. 

An example of a backward breaker is given in figure 6 which shows the sequence 
of profiles for a solitary wave of height 0.462 passing over an obstacle of radius 0.7. 
The forward face in the transmitted wave is steeper than that of the incident wave. 
The rear part of the wave steepens and forms a new crest that breaks backwards 
towards the cylinder, well after the main crest has cleared the obstacle. See figure 

The numerical method fails when there are insufficient computation points to 
resolve profiles containing points of high curvature, or when the distribution of 
values of 4 becomes too irregular to form accurate tangential derivatives. This has 
occurred a t  the point of backward breaking. 

The backward breaker is caused by the flow over the obstacle due to the 
transmitted wave. A steady flow over a semicircular obstacle induces a steady 
downstream disturbance as discussed above. For small cylinders and moderate flows 
this disturbance is a train of stationary waves propagating a t  speed c on a current 
of speed - c.  Our backward breaker may be the first wave in such a wave train caused 
by the unsteady flow of the passing wave. As the transmitted wave recedes any such 
waves become free to propagate towards the cylinder. The first wave either steepens 

6 ( b ) .  
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FIUURE 6. a = 0.462, R = 0.7.  Backward breaking: B-B. Transmitted wave moves right to left. 
(a)  t = 0, 1 ,  2 , .  . . ,9. (b)  Final stages of breaking: t = 9.6, 9.7, 9.8, 9.9. 

sufficiently to break, or simply travels over the obstacle. Whether or not the wave 
breaks, the net effect is a wave reflection which appears to originate in the region of 
uniform topography beyond the cylinder. A more clear-cut example of the generation 
and reflection of waves by this type of mechanism is documented by New, Dyer & 
Lewis (1986, 1987), and see New & Dyer (1988). These papers report field 
measurements of internal waves on a pycnocline, in an estuary. The tidal flow 
generates a stationary wave train behind an irregularity of the bed and as the tide 
slackens the stationary waves become free to propagate. 

Unlike the small wave in the discussion on C-C above, the solitary waves in B-B 
are larger. Consequently they may be able to induce more than one disturbance of 
wave-train type, and with greater amplitude. We investigated the type of 
disturbances induced by uniform streams a t  infinity passing over a semicircle of 
radius 0.7, similar to those calculations discussed for C-C. The maximum flow 
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FIGURE 7. a = 0.462, R = 0.8. Forward breaking: F-B. The wave breaks well beyond the 
obstacle. t = 0, 1.0, 2.0,. . . ,7 .0 .  

velocity over the obstacle is 0.6 which corresponds to a uniform flow a t  infinity of 
0.42. The free surface deforms in two time units into a steep downstream wave which 
breaks backwards onto the semicircle. This strongly suggests a connection between 
the flow over the semicircle and the unsteady backward breaker. However, it does 
suggest that our backward breaking may be best thought of as the natural, forward 
breaking of an incipient stationary wave. On the other hand, the greater heights of 
the incident solitary waves in B-B make the quantitative comparison with a steady 
upstream current over an obstacle, more difficult than the comparison made for C-C. 

3.4. Forward breakers (F-B) 
If we increase either the wave height or cylinder radius from the values for the 
region B-B the front of the transmitted wave breaks. This zone F-B in (a ,R)  space 
(figure 2) is characterized by the forward breaking of the transmitted wave. Note 
that surface steepening in the rear part of the wave, which may lead to the backward 
breakers of B-B, also occurs, but F-B is characterized by the forward breaking 
occurring before any backward breaking. 

Figure 7 is a sequence of profiles €or a wave of height 0.462, travelling over a 
cylinder of radius 0.8. At the last stage the wave is breaking, and the computations 
can no longer resolve the motion. I n  these circumstances the transmitted wave does 
not resemble a solitary wave. There is a close similarity to  figure 6(a)  where the same 
wave meets a slightly smaller cylinder. Note that the transmitted wave breaks far 
from the obstacle, and that it is only 0.55 in height ; well below the theoretical height 
at which a solitary wave is unstable. 

Forwards and backward breaking can occur simultaneously. For the wave of 
height 0.462 discussed here, the main crest breaks forward a t  the same time as the 
second crest breaks backward, if R is 0.77. 
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The largest waves (a  > 0.7) and the biggest cylinders (R > 0.9) produce extreme 
examples of forward breaking which are close to the cylinder, and occur while the 
unbroken incident crest is over the obstacle. The breaking is a very localized 
phenomenon and hardly disturbs the incident crest or its tail. Intuitively one expects 
a wave to break where the depth is decreasing, in front of the obstacle. However, a t  
all points in the parameter space where waves break they do so beyond the top of the 
cylinder. Even in extreme situations the breaker forms to the left of the cylinder’s 
centreline. 

3.5. Tanaka instability (T)  
A rule of thumb learnt from the wave-train region W-T of figure 2 is that small 
semicircles up to a radius of around 0.5 have little effect on waves passing over them. 
However, this is only true of waves up to a height of about 0.78. At the top of figure 2 
is a region marked T in which small obstacles induce wave breaking. Solitary waves 
bigger than 0.78 are disturbed by small cylinders. The disturbance grows as the wave 
propagates away from the obstacle until, five or six depths away, the wave breaks 
a t  its crest. In this part of (a,R)-space most waves are higher than the wave of 
maximum energy (height a, = 0.78066). Tanaka (1986) shows that a, marks the 
lower boundary of instability. The evolution of the disturbance is similar to that 
shown by Tanaka et al. (1987). It would be surprising if this instability were not 
triggered by the cylinder. 

Two types of finite-amplitude evolution occur for Tanaka’s instability. According 
to the sign of the coefficient of the unstable eigenfunction in the perturbation, a wave 
higher than a, can either break or smoothly evolve into another solitary wave of the 
same energy and height less than a,. It seems likely that a perturbation due to a dip 
in the bed may lead to the latter type of evolution. Further, in so far as Tanaka’s 
instability may be related to wave breaking on a beach, this instigation of breaking 
by an elevation in the bed suggests that the non-breaking evolution is unlikely in 
shoaling water. 

4. Experiments 
Experiments were carried out in a wave tank to check the above numerical 

predictions. The tank was 70 m long and 2 m wide with a piston-type hydraulically 
operated wave maker a t  one end, and a beach a t  the other end which damped out 
extraneous wave disturbances. The wave maker was capable of forming solitary 
waves up to a height of approximately 0.52 a t  the obstacle, in the depths of water 
we used. The concrete bed of the tank deviated by less than 2 mm from a flat level 
plane. See figure 8. 

Each wave was allowed to propagate a horizontal distance of about 40m 
(approximately 150 depths), in a constant-depth region, before it reached the test 
section. This allowed the solitary wave to draw well ahead of any other waves 
generated by the wave maker. Since the wave had to propagate a long way, viscous 
dissipation caused the wave height to decay by 20% for the largest waves, and less 
for the smaller. The incident wave height was measured 2 m in front of the 
submerged obstacle. Further wave height loss due to viscous effects over the last 2 m 
was considered to be negligible, and that 2 m was far enough in front of the cylinder 
for the wave to have not yet been affected by it. Between each experiment the water 
surface was continuously monitored until there were no waves present larger than 
0.2mm. Very long standing waves were the slowest to decay and took up to 30 
minutes to disappear. 
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FIGURE 8. Schematic diagram of wave tank. 

We used capacitance wave gauges, placed vertically through the water surface. 
The gauge registered the depth every 0.0351 s over a period of about 10s. The 
upstream gauge measured the height of the incident wave, and this gauge remained 
fixed throughout the experiments. All the wave gauges were placed close to the 
centreline of the channel, which was a partitioned subsection of the tank about 60 cm 
wide. Limitations on the data capture equipment prevented use of more than three 
gauges, along with the fixed upstream gauge. This restriction on the number of 
gauges made it necessary to generate a wave, move the gauges, and then generate the 
same wave again. By making three runs of the same wave local surface eIevations, 
as a function of time, were obtained at nine positions (two of which coincided just to 
the right of the obstacle), as shown in figure 8. The three gauges were fixed relative 
to each other, and placed on a movable carriage so as to make swift and accurate 
positioning easier. 

Ideally the three incident wave heights (as measured at the upstream gauge) would 
have been the same. However, the heights were found to vary by up to 5% of the 
mean value. To allow for this, the corresponding computations were carried out using 
the three different incident wave heights, as measured a t  the upstream gauge. So our 
computations conform as closely as possible to the circumstances of the experiments. 
A video record was also made of the surface motion near the cylinder. 

The cylinder was a concrete drain pipe (204 mm in radius), sawn down its length, 
and cemented to the concrete bed of the wave tank. The pipe was positioned so that 
the cross-flume variation in fluid depth over the pipe was nowhere more than 
+ 1  mm. The fluid motion was observed to be uniform across the tank width, and 
there were no spurious waves reflected between the partition walls. 

We chose to examine the effects of three non-dimensional cylinder radii : R = 0.6, 
0.7, and 0.8. The value of R was varied by altering the depth of water. The depths 
used for the 204 mm cylinder were 340, 291, and 255 mm with an error of f0 .5  mm. 

There are several sources of error. The gauges have an accuracy of f 0 . l  mm. The 
video record showed that the passage of the larger waves caused about f 1 mm 
horizontal movement of the gauges a t  the level of the surface. The movement 
occurred because the lower end was left free, in order to minimize the disturbance to 
the flow. This horizontal motion is only significant when the free surface is steep. 
There may also have been hysteresis in the gauge responses due to wetting of the 
gauges as the water surface fell. This source of error can be quantified by examining 
the record made at the upstream gauge, where the gauge should have registered a 
symmetric response, if we assume that the experimental waves were spatially 
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symmetric. The experimental and computational initial data were found to disagree 
by much less than one symbol size in the figures showing results below. 

5. Experimental results 
The values of incident wave height and cylinder radii chosen for the experiments 

are shown in figure 2. Figures 9 ( b )  to 11 ( 6 )  show graphs of the local surface elevation 
a t  the wave gauges, as a function of time. Both axes are in non-dimensional 
variables. The experimental results are shown as discrete symbols and our numerical 
predictions as continuous lines. Error bars on the data would be about the same size 
as the symbols when the surface is nearly horizontal, and about five times the symbol 
size when the local surface slope is 45'. 

In  each example, only one representative set of measurements is shown. Each set 
of measurements corresponds to one of the three positions in which the gauge 
carriage was placed. The three gauges on the carriage measured the wave as i t  passed 
through the experiment. The sets of records of the other two gauge carriage positions, 
with their slightly different waves, are not shown, even though some show closer 
agreement with the computations than the results presented. 

The positions of the wave gauges are given in figures 9 ( a )  to 11 (a) .  The symbol 
drawn over each gauge position corresponds to the symbol used to plot the 
experimental data in figures 9 ( b )  to 11 (b ) .  Figures 9 ( a )  to 11 (a )  also show the 
corresponding sequences of computed wave profiles (the waves move from right to 
left). All the graphs 9, 10 and 11 are vertically exaggerated by a factor of eight. The 
exaggeration distorts the semicircular obstacle into an ellipse. 

5.1. Example 1 

The first example (see figure 9a,  b)  illustrates a wave which did not break at any time 
and exhibited the phenomenon of crest-crest exchange across the obstacle (C-C) .  The 
cylinder radius R was 0.6 and the incident wave height a was 0.311. 

There is good agreement between theory and experiment throughout the 
simulation time for those gauges away from the semicircle. For gauges near the 
obstacle, the agreement is good up to time 8, by which time the crest has passed the 
gauge. Afterwards our computations predict small-scale disturbances close to the 
obstacle, not recorded in the wave tank. It is likely that the flow over the semicircle 
separates, leading to these differences in small-scale behaviour. In  addition the 
numerical scheme may be less reliable since the computation points in this region 
become widely separated (up to  a distance of 0.3) by the flow. 

The peak response and its timing for all three gauges are in close agreement with 
our theory. Also the main phenomenon of crest exchange across the obstacle has been 
accurately predicted, and can be seen in figure 9 ( b )  from the lower peak response a t  
gauge position +, relative to the peaks at gauges V and A. 

5.2. Example 2 
Figure 10(a, b )  shows an example of the phenomenon of forward breaking (F-B in 
figure 2). I n  figure 2 the example (which is a cross labelled 2) is seen to lie on the 
border of the regions F-B and B-B. The initial stages of backward breaking occurred 
in the experiment. The cylinder radius R was 0.7 and a was 0.514. The waves used 
in this experiment were nearly the largest which could be made in the tank at the 
water depth of 291 mm. 
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FIGURE 9. a = 0.311, R = 0.6. (a) Positions of experimental wave gauges and computed wave 
profiles. The symbol over each gauge corresponds to the symbol used in (5) to plot the gauge’s 
record. Vertical exaggeration = 8. t = 0,  2, 4, 6, .  . . ,16. ( b )  Comparisons of experimental wave 
gaugf records (V,A,  +) with computations (-). Time increases along the x-axis in units of 
W d S .  

The agreement is good between the predicted gauge responses and those measured 
in the experiments. The biggest discrepancy occurs at  gauge position V in figure 
l O ( b )  which is placed beyond the obstacle. The draw-down of the free surface near 
the obstacle has been over-predicted by 50% at  gauge V and this supports the 
inference that there was flow separation from the cylinder surface. We regret that no 
steps were taken to visualize this flow. 

In this example the transmitted wave breaks (F-B in figure 2). The last profiles in 
figure 10 (a) show strong surface steepening. This corresponds to the rapid rise in the 
water surface at  time 6.5 in figure 1 0 ( b ) ,  at gauge positions V and + . 
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FIQURE 10. a = 0.514, R = 0.7. (a)  Computed wave profiles and positions of wave gauges. Vertical 
exaggeration = 8. t = 0,  1, 2, . . . ,8. (b )  Comparison of experimental wave gauge records (A, 'J, + ) 
with computations (-). 
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The predictions stop a t  the moment the computations cannot resolve the surface 
motion. However, the video record allowed us to look at the waves beyond the last 
time of computation. Surprisingly, in this example the very steep surface of the 
backward breaker did not tip over, apart from slight spilling near the glass walls of 
the tank. Instead the wave (of approximate amplitude 0.08) passed back across the 
obstacle. This wave was followed by one further wave, which had an amplitude of 
approximately 0.04. So the waves behaved as though they were reflected from a 
point in the region of uniform topography, to  the left of the obstacle. (This non- 
breaking motion is indicated more precisely by the smoothness of the wave record a t  
A in figure 10(b) ,  and by other gauges whose records are not presented here.) 

These observations lend credence to  the idea that the passage of a solitary wave 
over a cylinder induces a train of downstream stationary waves, which later become 
free to propagate and appear as reflected waves coming from beyond the cylinder. 
See the discussion of B-B in $3  above. 

5.3. Example 3 
The third example is for a cylinder of radius 0.8 and a wave height of 0.191. There 
is a backward breaker (corresponding to B-B in figure 2) and no forward breaking in 
the main crest. 

Figure 11 (b)  shows the wave gauge responses. It is evident that the agreement 
between experiment and prediction is worst after time 7 a t  the gauge + , (which is 
in the trough of the backward breaker). The surface profiles in figure 11 (a )  show the 
exchange of crests across the obstacle, which corresponds, in figure 11 (b )  to  the lower 
peak response of gauge + (at time 5 )  relative to the other gauges. There is also a deep 
draw-down of the free surface in front of the backward breaker, seen in gauge + near 
time 8. However, as in example 2, the video shows that the water surface steepened, 
but the wave did not break backwards. Again we suppose this lack of agreement may 
be due to separated flow behind the cylinder. In  the computations the discretization 
points have been drawn apart by the flow near the backward breaker. There may be 
short stationary waves generated by the flow, not resolved by the computation- 
points, which may be why the numerical predictions are irregular. 

6. Discussion 
The (a ,  R) parameter space has been divided up into zones illustrated in figure 2, 

each of which has been separately discussed in $3. It is important to emphasize the 
fact that there are smooth transitions from one type of behaviour to another, in the 
(a,  R) parameter space. Apart from W-T and C-C, all the regions are characterized by 
some breaking wave event, and as the parameters vary the breaking events smoothly 
change their position and timing. 

In  C-C the crest exchange is of principal importance, but the effect is seen over a 
much larger region of the parameter space. For example, the breaker F-B which 
occurs when R is 0.9 and a is 0.8 is an extreme form of crest exchange, in which the 
second crest breaks as it forms. If we reduce R from 0.9 then for wave amplitudes 
greater than 0.78 the second crest breaks further from the cylinder and we have 
Tanaka breaking T. For values of a between 0.6 and 0.78, as we reduce R from 0.9 
to 0.8 the breaking in F-B changes from breaking near the obstacle to breaking far 
from the obstacle. If we reduce R still further, to  around 0.7, the forward breaking 
occurs far beyond the obstacle, and is accompanied by backward breaking. If we also 
reduce a to around 0.6 then the backward breaking, B-B, occurs before the forward 
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FIUURE 11. a = 0.191, R = 0.8. (a) Computed wave profiles and positions of wave gauges. Vertical 
exaggeration = 8. t = 0, 1, 2 , .  . . ,6 .  (b) Comparison of experimental wave gauge records (V, A, +) 
with computations (-). 

breaking. Further reductions in a or R correspond to wave motions without any 
breaking events, and the transmitted wave carries a wave train in its tail (W-T). 

A solitary wave passes over a semicircle and induces a flow. If we allow a steady 
upstream current of speed c to flow over the same obstacle then for R = 0.7 and c less 
than approximately 0.2 a wave train occurs, and a t  certain higher flow rates a single 
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FIGURE 12. R = 0.8. Wave group passing over semicircle. Initial wave profile yo = 0.1 exp ( -X2/16) 
sin ( 2 4 ,  and initial velocity potential 4, = 0.1 exp ( -X2/16) cos ( 2 X ) / c ,  where 2 = Btanh (2) and 
X = S-6.8. t = 10, 1 1 ,  12,. ... 17. 

backward breaking wave is seen downstream of the semicircle. Both types of 
disturbance are accompanied by a depression over the obstacle. The depression may 
correspond to the trough found between the two exchanged crests in C-C, and the 
downstream wave train may be related to the waves found in the wake of the 
transmitted wave in W-T. The higher flow rates give a backward breaking wave 
which appears to be similar to the B-B regime. 

The experimental results are in good agreement with computation except behind 
the cylinder where flow separation may occur. This effect may be why observed 
surface disturbances in this region were smaller than expected, as occurred in 
example 2 of $5. However, the real fluid effects did not cause a different type of 
breaking from that computed. For times after those which we were able to compute, 
the video record shows many small-scale surface phenomena, probably influenced by 
the tank walls and by surface tension. Further experiments could look a t  other parts 
of the parameter space and investigate the importance of flow separation. 

Since the above observations of solitary waves were not in accordance with our 
initial expectations, i t  is interesting to compare them with the motion of a group of 
periodic waves, travelling over the same semicircular obstacle. We consider an 
isolated group of waves which a t  time zero is symmetrically arranged about x = 0. 
The waves have sinusoidal profiles of wavelength n and the group is amplitude- 
modulated by exp ( -x2/16). The central, maximum crest height a t  x = 0 is 0.1, and 
there are five waves of significant amplitude in the group. Figure 12 shows the group 
propagating to the left towards a semicircle of radius 0.8, which is centred a t  
x = - 6.8. The waves preceding the largest pass over the obstacle without appreciable 
steepening. The central crest of the group, A, steepens over the front face of the 
semicircle and nearly breaks at time 12, but i t  recovers. The next wave in the group, 
B, which has amplitude less than the central maximum of 0.1, breaks shortly after 
the last profile of figure 12. The breaking of B occurs in a way that is reminiscent of 
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breaking on a beach or in shoaling water, and the motion is not at all like that of a 
solitary wave. 

The wave group example shows that in a sequence of waves passing over an 
obstacle, each wave’s interaction affects the next. The central wave A is able to 
surmount the obstacle, whereas its smaller successor B breaks. The breaking appears 
to be due to the backflow in the trough behind A. This sets up a counter-current over 
the semicircle against which B propagates and breaks. The presence of even small 
adverse currents a t  the obstacle may significantly affect whether or not breaking will 
occur. 

In  order to investigate the influence of currents on the solitary wave results 
reported above, we modified the program to model solitary wave motion over a 
semicircle, against a steady stream. The initial data consists of a solitary wave 
superposed on a flow over the semicircle, which has y = 0 and the bed contour as two 
of its streamlines. The initial position of the solitary wave was chosen close enough 
to the obstacle to avoid development of stationary waves downstream of the 
cylinder. The interaction between solitary and stationary waves has yet to be 
studied. For example a solitary wave, of height 0.5, propagates towards a semicircle 
of radius 0.5, and the steady stream flows from left to right, with speed c a t  infinity. 
When c = 0 the wave passes over the obstacle without breaking, but when c = 0.2 or 
0.3 the current causes the wave to break. The wave still breaks beyond the cylinder. 

These and a limited number of further computational examples suggest that 
(i) periodic waves differ from solitary waves, in that interactions in the obstacle 
neighbourhood cause breaking, and (ii) breaking of solitary waves is affected by an 
adverse current, but such breaking still occurs beyond the obstacle. 

It is dangerous to draw any further conclusions from these examples since a 
number of new parameters are introduced. The amplitude and wavelength of the 
waves within the wave group can be varied, as can the initial position of the solitary 
wave, relative to the cylinder. Clearly, in order to come to definitive conclusions 
much more investigation of the multi-dimensional parameter spaces is needed. 

7. Conclusions 
In  this paper we have described the extension of the Dold & Peregrine (1986) 

method from wave propagation in uniform depth to motion over a bump placed on 
a flat bed, whilst maintaining the efficiency of the program. Solitary waves are made 
to propagate over a semicircular obstacle, and the unusual surface motions were 
described in $3. The new phenomena we report for solitary waves are: 

(a )  a double crest when the wave i s  near the obstacle (C-C and in most of B-B and 
F-B in figure 2) ; 

( 6 )  a backwards breaker near the obstacle (B-B) ; 
( c )  waves appear to reflect from a region of uniform depth (B-B) ; 
( d )  when waves break they invariably break beyond the centreline of the 

semicircle (even when there is a small steady current flowing over the obstacle, 
against the oncoming wave) ; 

( e )  the incident crest breaks close to the obstacle only when the top of the 
semicircle is close to the surface. 

The experiments described in 5 4 confirm crest-crest exchange and backward 
breaking. The comparisons in 4 5 show a reassuring quantitative agreement between 
our computations and the experimental results. The main discrepancies between 
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theory and experiment involve short-period oscillations near the back of the 
cylinder. It is suspected that the flow separated from the cylinder surface. 

Some of the features described in this paper, especially those concerning reflected 
waves, may be related to the waves generated by steady flow over a semicircular 
cylinder. The principal waves generated by the steady flow, in its initial evolution, 
discussed under C-C, are about the same size as the disturbances induced by the 
solitary waves, Large solitary waves (a > 0.6) are well-described by our numerical 
method, but they are difficult to make in the laboratory. Consequently both 
Tanaka’s (1986) instability, and its presence in the region T, await experimental 
confirmation. The phenomenon (e) could be checked by making the water over the 
obstacle very shallow. Even a moderate wave should be able to induce a breaker. We 
find that periodic waves in the presence of an obstacle exhibit a response that differs 
from that of solitary waves. An adverse current affects whether or not a solitary 
wave will break, but any breaking still occurs beyond the obstacle. 

Many thanks to Professor M. Losada for permission to use the wave tank at 
Santander University, Spain. Thanks also to M. Lewy for his help with the computer 
programming, and A. F. Teles da Silva for program testing. Financial support 
for M. J .  Cooker from the UK Science and Engineering Research Council, is 
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